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Executive Summary 

This document corresponds to deliverable D4.1 “Report on 6G-SENSES, Technologies for Wireless Edge 

Caching, Context and Architecture Design” of the 6G-SENSES project. The deliverable provides an in-depth 

survey of the state of the art related to Wireless Edge Caching technologies, providing a wide-ranging 

overview of the different layers involved in the development of this technology and its integration into 

contemporary network infrastructures.  The report focuses on challenging network scenarios in which timely 

and updated sensing information is required or when operating in highly dynamic, mobile-driven networks 

involving unmanned aerial vehicles (UAVs) or other mobile devices. In these cases, the limitations of 

conventional caching strategies become more pronounced, and specific solutions should be developed. As a 

first step in the analysis of the best Wireless Edge Caching solutions we first developed a thorough simulation 

framework that includes both network communication between devices and sensors. This simulation 

framework has been exploited to implement and compare multiple traditional caching strategies such as 

First-In First-Out (FIFO), Least Recently Used (LRU), and Least Frequently Used (LFU). The simulator has been 

used to compare the performances of all the caching strategies, under different key performance metrics, 

such as HIT/MISS ratios, end-to-end (E2E) delay, and data freshness. In addition, we plan to design algorithms 

that also exploit location related information, to develop ad-hoc location-based caching mechanism and 

evaluate how these approaches improve the caching performance with respect to standard caching 

mechanisms. 

A more precise and definitive detailed architectural description of the Wireless Edge Caching mechanism will 

be provided in deliverable D4.2. 
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1 Introduction 

The global demand for a robust network infrastructure is growing at an unprecedented rate. The proliferation 

of streaming services, the expansion of Internet of Things (IoT) applications, and the widespread adoption of 

smart devices are pushing the limits of traditional cloud-based systems. Consequently, conventional 

centralized architectures are increasingly unable to meet the escalating demands for speed, capacity, and 

low latency performance required by today’s digital landscape. The advent of 5G and the imminent arrival of 

6G technologies, are fundamentally reshaping the design and implementation of network architectures. 6G 

is witnessing paradigm changes, such as the elimination of the traditional “cell-like” deployment of mobile 

communications infrastructure, enabled by the introduction of cell-free massive multiple-input multiple-

output (CF-mMIMO). This innovation is a significant technical advancement aimed at enhancing the 

performance of wireless networks. In a CF-mMIMO system, when all access points (APs) deployed in a system 

collaborate to serve a fixed number of users, as the number of APs increases, the cell boundary effect of 

traditional cells can be eliminated. As a result, a “cell-free” system is formed, and the capacity and 

performance of the communication system can be significantly improved.  

Despite the power of the centralized cloud model, its use is becoming increasingly inadequate for efficiently 

handling the vast volumes of data traffic and the real-time processing demands of modern applications. The 

Content Delivery Networks (CDNs) [1] paradigm has arisen in order to accommodate the delivery of large 

bandwidth of data for content streaming, but CDNs are not universally applicable to all types of applications.  

While CDNs are particularly efficient when local storage and data rates are the bottlenecks of the 

infrastructure, they fall short to address all the needs of more complex applications.  

To address these limitations, Wireless Edge Caching has gained significant attention and has expanded in 

both scope and effectiveness. Wireless Edge Caching [2], [3] decentralizes storage and processing, moving 

data closer to the end user by shifting from traditional centralized data centres to lower-tier infrastructures, 

such as base stations (BSs), cells, and user devices. This shift enables quicker access to content and reduced 

dependency on remote cloud servers, minimizing E2E latency and improving the overall perceived experience 

of the final user.  

Several Wireless Edge Caching solutions have been proposed to increase the network quality in terms of 

throughput and latency reduction. However, while it is relatively easy to enable edge caching mechanisms in 

traditional scenarios, it is hard to generalize its use in a more general and complex scenario such as the one 

envisioned by 6G-SENSES. Specifically, when timely and updated sensing information is required, or when 

operating in highly dynamic, mobile-driven networks involving unmanned aerial vehicles (UAVs) or other 

mobile devices; in such cases, the limitations of conventional caching strategies become more pronounced. 

Therefore 6G-SENSES will develop ad-hoc solutions for Wireless Edge Caching that consider the above-

mentioned constraints. 

More specifically, 6G-SENSES considers the Open RAN (O-RAN) and 3rd Generation Partnership Project (3GPP) 

framework taking advantage of the disaggregation, virtualisation and network and service management 

capabilities inherent in O-RAN and supporting CF-mMIMO operation. A new network segment in-between 

the Wireless Access Technologies (WATs) and the UEs is envisioned to enable the control of advanced 

elements such as Reconfigurable Intelligent Surfaces (RISs). Taking a high-level view, the proposed system 

architecture combining all network components along with the Service Management and Orchestration 

(SMO) are depicted in Figure 1-1. Edge caching can be supported by the Edge Cloud functionality envisioned 

in the 6G-SENSES architecture located at the Multi-access Edge Compute (MEC) nodes as shown below. 
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Figure 1-1 6G-SENSES Architecture 

Within the 6G-SENSES project, a cross-layer approach will be developed to enhance edge caching 

mechanisms.  This approach will integrate various features into an Artificial Intelligence (AI) / Machine 

Learning (ML) model for traffic prediction and characterization. These features will encompass multiple types 

of data, enabling a more accurate and efficient caching strategy that is responsive to the dynamic and 

complex nature of modern network environments: 

1. Network traffic characterization: This will permit the classification of network user and device 

behaviour (e.g. bandwidth requirements, latency sensitiveness), thus providing useful insights to 

determine the level of caching needed by the network clients.  

2. Mobility information:  This allows proactive relocation of information to the location where and the 

time when the client will need it, based on predictive analytics. 

3. Content characterization: Popular content will be selected according to statistics, client/service 

forecasting intelligence are excellent candidates for edge caching. This characterization can exploit 

big data analytics as well as AI techniques such as reinforcement learning or deep learning.  

4. Location-Aware Caching:  In IoT systems, where physical movement of agents is involved, traditional 

caching strategies fail to capture which data should be retained in memory. We propose a novel 

caching strategy which aims to capture the key values of caching in a system where mobility of both 

actors and sensors is fundamental.  

The 6G-SENSES project will develop suitable edge caching algorithms that will be able to increase the required 

level of throughput and latency, while considering the limited power budget and processing resources of 

edge devices. 

The main contributions of this deliverable are the following: 

1. Comprehensive Survey: We provide a comprehensive survey of state-of-the-art Wireless Edge 

Caching technologies, offering a broad overview of the various layers that contribute to integrating 

Wireless Edge Caching into modern network infrastructures. 

2. Mobile Devices as Edge Servers: We investigate a specific approach to Wireless Edge Caching that 

utilizes mobile devices as edge servers. 

3. Caching Policies Study:  We implement multiple traditional caching strategies in the context of 

mobile devices acting as edge servers.  
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4. Simulation Implementation: we implement our use-case in a physically accurate simulated 

environment. In the simulated environment, we implement multiple traditional caching strategies 

such as FIFO, LRU, and LFU. 

5. Performance Comparison: We compare the performances of all the caching strategies, under 

different key performance metrics, such as HIT/MISS ratio, E2E delay, and data freshness. 

1.1 Organization of the document 

The deliverable is organized as follows: 

• Chapter 2 explores the state-of-the-art of Wireless Edge Caching techniques, providing a 

comprehensive survey of Wireless Edge Caching technologies, examining all the key aspects that 

currently enable and motivate the use of caching. 

• Chapter 3 introduces a specific use case for Wireless Edge Caching. This use case is tied to Use Case 

#1 presented in 6G-SENSES deliverable D2.1 [4]. In this deliverable, the aspects concerning the 

caching mechanism are explored in more details. The concept of Wireless-Fidelity (Wi-Fi) sensing is 

also presented, which ties directly to the cached data of the algorithm. 

• Chapter 4 presents the Wireless Edge Caching model and evaluates the performance of multiple 

caching strategies in the use-case presented in Chapter 3. 

• Chapter 5 summarizes the deliverable and outlines plans for the upcoming period. 
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2 State-of-the-Art in Wireless Edge Caching 

Wireless edge caching [2], [3] refers to a novel distributed architecture for storing contents at the wireless 

edge networks, such as BS and user equipment (UE), to efficiently accommodate the proliferation of mobile 

devices and new data-hungry applications. 

In order to efficiently deploy a Wireless Edge Caching solution, multiple challenges need to be addressed with 

different and specific application requirements. Achieving efficiency in Wireless Edge Caching requires joint 

optimization of network-layer caching and physical-layer signal transmission. 

For application-specific use-cases, dynamic content popularity [6], [3] needs to be addressed in order to be 

able to deploy an efficient caching policy. This approach differs significantly from traditional caching models, 

where standard algorithms typically store data based on historical access patterns. 

By considering content popularity, caching can move beyond simply retaining previously accessed data. Since 

content popularity fluctuates over time, maintaining an up-to-date view of requests enables caching to 

anticipate future access rather than relying solely on past data. 

In social networks, data location is also crucial, as nodes in proximity are more likely to request the same 

data [8].  

Although caching strategies for traditional Internet applications have been widely explored in the past, the 

unique characteristics of 6G applications drive the need for developing new caching mechanisms that 

consider these distinct features. 

In this chapter, we provide an in-depth examination of the technologies that make Wireless Edge Caching 

possible. We explore the advancements, tools, and methodologies currently enabling efficient caching at the 

network edge, focusing on how these innovations contribute to enhanced performance, reduced latency, 

and optimized data management. 

2.1 Wireless Enabling Technologies 

Advances in network technologies have deeply influenced the way the network infrastructure is shaping in 

these last years. The advent of 5G technologies and the support of high bandwidth rates has enabled the 

possibility of having ultra-low latency data on the edge. This paradigm is fundamentally shifting the way data 

is retrieved from centralized servers, decreasing both latency and backhaul traffic, relieving the main servers 

from excessive computations. 

Recent advances in network technologies have drastically changed the design and functionality of network 

infrastructures. With the emergence of 5G and now 6G technology, characterized by high bandwidth and 

ultra-low latency communication, a new paradigm has been established in which data is stored and 

processed closer to the end user, relieving the load from the central unit servers. This shift enables the real-

time access of data and faster response time, which is critical in order to accommodate the demand of new 

emerging applications in the IoT ecosystem. Edge computing fundamentally changes the way data is retrieved 

from centralized servers. The way interaction changes is deeply dependant on the application, but the main 

paradigm lies in the concept of increasing the authority that resources on the edges have in interacting with 

the end-user, either by caching actual data content, or increasing the role authority that the edge servers 

partake in the application ecosystem. 

The intrinsic distributed method that these solutions achieve improve the overall network efficiency, 

relieving the usage on central processing units (CPUs). They also minimize the use of remote cloud units, 

while providing faster access to data, additionally offering benefits to latency-sensitive applications. 
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2.1.1 Wireless Edge Caching Infrastructure 

Wireless Edge Caching brings data closed to the end user, by decentralizing storage and processing, thus 

moving from traditional centralized datacenters to lower-tier infrastructures, such as BSs, cells, and user 

devices. This shift enables quicker access to content and reduced dependency on remote cloud servers, 

minimizing E2E latency and improving the overall perceived experience of the final user. 

While much of the action occurs at the lower layers of the network, it is crucial to have a comprehensive 

understanding of the whole service infrastructure in order to develop robust and effective edge caching 

strategies. Having multiple layers working together and exchanging crucial information can deeply enhance 

the performances of the caching on the edge. Caching on the other hand, should consider how the network 

is layered, such that the caching algorithm and the requests prediction not only consider edge devices, but 

also the requests that the central cloud may evoke based on certain events. 

Figure 2-1 shows an example of edge nodes communicating through wireless channel (dotted lines) with 

mobile devices, with one of them (the top one) receiving data from the infrastructure network through a 

wireless link. 

2.1.2 Heterogeneous Network and Coded Caching 

Data consumption has seen a tremendous increase over the past few years, increasing not only the E2E delay 

requirements, but also in terms of network capacity. This increase has so far been managed with the use of 

CDNs, which mirror data in multiple locations, thus reducing the load on the main servers and bringing 

content closer to the user. While these solutions greatly accommodate the needs of some modern 

applications, they are particularly efficient only when local storage and data rates are the bottlenecks of the 

infrastructure. 

These characteristics are most often true in cellular networks, where BSs tend to not have enough storage. 

The last-hop wireless links have, however, fundamentally low throughput which, even with the increase 

provided by advanced technologies such as 5G and soon 6G, is still not enough to satisfy the exploding 

increase in demand. 

 

Figure 2-1 Example of a Wireless Edge Caching infrastructure 
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Figure 2-2 Coded Caching architecture in a heterogeneous network. 

Coded caching was first introduced in 2012 [9] as a solution to the content distribution problem in a wireless 

setting. In order to focus on this new technique, the setup ignored variations in content popularity and 

limited user-to-cache access to exactly one user connecting to one cache. The authors showed that 

conventional caching techniques are inefficient in such a setup. Instead, one can leverage the broadcast 

capabilities inherent to wireless communications in order to send a small network-coded message that can 

serve a large number of users at once. 

By providing storage capabilities at the network nodes (BSs and Wi-Fi access points) and creating a large-

scale distributed cache, users will be served by connecting them to one or more nodes hosting their 

requested content. Delivery protocols will use algorithms that are aware of attributes of wireless networks 

like the broadcast medium and interference. 

Figure 2-2 shows and example of a Coded Caching architecture in a heterogeneous network, with both BSs 

and Edge Caching Access Points providing content. 

2.1.3 Cooperative Caching in Cloud-Assisted Wireless Networks 

Cooperative caching aims at utilizing the computational capabilities of edge devices to handle network re-

quests, thereby reducing the workload on central servers. The type of cooperative caching that takes place 

can vary based on the operation and the authority that the edge servers take in the network infrastructure. 

Figure 2-3 shows an example of a Cooperative Caching architecture, where multiple layers contribute to bring 

data to the clients. Caching devices on the edge receive data from both a central unit and the clients. 
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Figure 2-3 Cooperative Caching architecture. 

2.1.3.1 Cloud Radio Access Network (C-RAN): 

C-RAN leverages virtualization technology to consolidate BS functionalities within a centralized cloud 

infrastructure. In this architecture, the typically heavy and complex tasks performed by BSs are offloaded to 

a CPU, enabling more efficient resource management. A C-RAN is composed of lightweight, distributed radio 

remote heads (RRHs), which handle the radio frequency transmission and reception, and are strategically 

placed across the network to ensure wide coverage. These RRHs are connected to the centralized CPU via 

low-latency, high-bandwidth optical fibers, which facilitate fast and reliable communication between the 

distributed units and the central processor. This setup enhances the scalability and flexibility of the network 

while reducing operational costs. 

2.1.3.2 Multi-Access Edge Computing (MEC) 

Multi-Access Edge Computing (MEC) [15] focuses on enhancing mobile networks by bringing storage, 

computing, and networking resources closer to the edge of the radio access network (RAN). This architecture 

places commodity servers at the edge of the network, allowing them to handle tasks such as application 

execution and data processing. By positioning these resources closer to end-users, MEC significantly reduces 

latency and enables faster data transfers, as information no longer needs to travel to a centralized cloud for 

processing. This proximity improves user experiences for applications that require real-time data, such as 

video streaming, gaming, and IoT services, while also alleviating the load on core network infrastructure. 

2.1.4 Wireless Device-to-Device Caching Networks 

Caching on the edge involves more than simply relying on the final nodes or cells in the network 

infrastructure. End-users' devices, such as smartphones and tablets, can serve as a valuable resource for 

caching purposes [14], [15]. By leveraging the storage and processing capabilities of these devices, network 

efficiency can be significantly improved. This technique is particularly useful when there is a lot of redundancy 

of the data transmitted, such as streaming services. In these cases, caching content in the devices can be 

shared with nearby devices, thus reducing the repeated request to the centralized architecture. 

However, while edge caching between devices presents notable advantages, it poses significant challenges, 

which mainly pertains security risks and increased power consumption. 
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Figure 2-4 Device-to-device data sharing 

Allowing direct communication between devices may expose users to malicious content or unauthorized 

access. On the other hand, keeping devices active to service other users may lead to some devices in the 

network being particularly busy and thus consuming more power than what the user may expect from the 

application. 

Figure 2-4 shows an example of a device-to-device data sharing architecture, where devices leverage 

properties from coded caching to efficiently use the broadband of a wireless devices. 

2.1.5 Mobility-Aware Caching in Cellular Networks 

Mobility plays a crucial role in addressing the challenges of caching within wireless networks, especially in 

dynamic environments where users are constantly on the move. An effective caching strategy should go 

beyond simply storing frequently accessed data closer to the user, it must also anticipate user mobility and 

proactively relocate cached data to different edge nodes based on predictive models on the movement of 

the user. By doing so, the system can ensure that relevant data remains accessible as users transition 

between different cells or network areas. 

This proactive approach can significantly enhance Mobile Edge Caching strategies by ensuring seamless 

session continuity, even during user handovers between different network cells. As a result, users experience 

lower E2E latency and improved service quality; this is particularly beneficial for latency-sensitive applications 

such as video streaming, gaming, or real-time communication. Predictive caching mechanisms not only 

optimize resource allocation but also reduce the likelihood of interruptions, making mobile services more 

reliable and responsive in dynamic network environments. 

Figure 2-5 shows an example of a MEC application in execution, where session-continuity is guaranteed by 

moving cached data between BSs that in range to the user. 
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Figure 2-5 MEC application in execution. 

2.1.6 Information-Centric Networking 

Information-Centric Networking (ICN) [17][10] is proposed as the next-generation network paradigm, 

redefining how data is managed and accessed. By shifting away from the traditional IP-based communication, 

ICN focus on handling information at the content level, introducing a system where data is broken into 

content chunks. In such model, users are no longer required to establish a direct, E2E connection with the 

server in order to access content. Instead, they send an interest packet, a request which specifies the desired 

content by its unique name, into the network. The response can then come from any network node that may 

have cached the requested data, independently from its original source. 

This paradigm shift allows data retrieval to become more efficient, as content can be delivered from nearby 

nodes that store cached copies rather than from a distant server, improving both latency and bandwidth 

usage in the network. This approach, additionally, inherently supports user mobility, as content can be 

accessed in a more flexible way, without the dependence to a specific source location. 

ICN is particularly well-suited for applications in the IoT ecosystems [5], as they are intrinsically content-

centric, prioritizing data over its source location. This aligns perfectly with the ICN paradigm, enabling 

efficient, location-independent data distribution, ensuring robust performance even in a dynamic, data-

intensive environment. 

Thanks to its innovative design, ICN is perfectly suited to address key challenges in network efficiency, 

scalability and adaptability. It seamlessly integrates with the current landscape of Wireless Edge Caching, 

enhancing how data is stored and distributed across networks. 

Today's Internet's architecture is said to be based on a “Thin Waist” model, centered on a universal network 

layer, IP, which implements the minimal functionality necessary for global inter-connectivity. In Figure 2.6, it 

can be seen how ICN plans to replace the IP protocol, or wrapping it, with content chunks-based network. 
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Figure 2-6 ”Thin Waist” design of the modern network infrastructure. 

2.1.7 Federated Learning 

As mentioned in the previous subsections, 6G-SENSES adopts the concept of edge caching to store data closer 

to the end-devices, typically in regional servers or edge devices. The goal is to jointly reduce latency and 

minimize bandwidth usage by caching frequently requested content or computational results near the "edge" 

of the network. Edge Caching and Federated Learning (FL) can be integrated in 6G-SENSES improving 

performance and security. 

Specifically, FL is a decentralized ML approach where multiple devices or nodes (such as smartphones, IoT 

devices, or edge servers) collaboratively train a model without sharing raw data. Instead of sending data to 

a central server, each device trains a local model on its own data, then only shares model updates (such as 

weights or gradients) with a central server, which aggregates these updates to create a global model. This 

assists in maintaining privacy and minimizing data transmission. 

Edge caching and FL can be combined providing the following benefits to the system”: 

1. Efficient Data Distribution: In a FL setup, the data required to train a model might be distributed 

across multiple devices. edge caching can be used to pre-store model updates, training data (or 

metadata). This reduces the time it takes for devices to access necessary information for model 

updates, improving the efficiency of the FL process. 

2. Reduced Latency in Model Training: Since FL often involves multiple rounds of communication 

between edge devices and a central server, edge caching can help cache the model parameters or 

updates at edge nodes, reducing latency during model synchronization. This can speed up training 

processes as devices do not have to send or receive updates directly from distant central servers. 

3. Optimization of Bandwidth Usage: FL involves sending updates between devices and a central server. 

Edge caching can help reduce bandwidth usage by caching common model updates or shared data 

at the network’s edge. Devices can then retrieve necessary updates locally rather than transmitting 

large amounts of data to the central server, improving scalability and minimizing congestion in the 

network. 

4. Improved Privacy and Data Security: Both edge caching and FL emphasize data privacy. FL ensures 

that personal or sensitive data remains on the device, and edge caching ensures that less data needs 

to be transmitted across the network. By reducing the need to move raw data and model updates 

across long distances, these techniques can enhance security by minimizing exposure to potential 

breaches. 
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FL is a specific category of Distributed ML with distinct differences from other categories of distributed ML. 

This methodology addresses various problems that have emerged in ML, such as the existence of hundreds 

of thousands of devices with different computing capabilities scattered worldwide, that collect and generate 

a volume of data and information larger than ever. The increasing presence of such devices in our lives has 

sparked a significant debate about the personal nature of each user's data and how it can be ensured in the 

modern environment we describe. FL allows large organizations with thousands of clients to collaborate to 

produce better predictions than learning models, while simultaneously preserving the personal information 

of their clients. FL systems are divided into cross-device systems, consisting of thousands of clients, each with 

its own data, and cross-silo systems, primarily involving large organizations with datasets from many users. 

Depending on how the data is distributed and its structure in a FL environment, FL is divided into three 

different categories: 

1. Horizontal Federated Learning: Horizontal FL is used for datasets that share the same feature space 

but have different sample spaces. It can have two different architectures, with one involving a server and the 

other where one of the participating users plays the role of the server. 

i. Architecture with a server: This architecture is also known as centralized FL. In this, the server 

coordinates the process of aggregating local updates and updates the local users with the global 

model that emerges (Figure 2-7). During the model training process, the parameters exchanged can 

be either weights or gradients of the loss function. This practically means that each user either trains 

the initially sent model and updates the parameters, which are then sent as updates, or calculates 

the gradient of the loss function, as described earlier, and sends this gradient as an update to the 

server. The above process continues until a specific desired model accuracy is achieved or a 

predetermined number of iterations of the process is completed. 

 

Figure 2-7 Indicative Architecture of a FL System with a Server. 

ii. Architecture without the Presence of a Server: In this specific architecture, there is no central server 

coordinating the training process. Instead, updates are sent directly between users, and they adjust 

their models based on the parameters of other users, generating new updates by training the model 

on their own data. Due to the absence of a server coordinating the entire process, the existence of 

protocols is necessary. These protocols can be either cyclic transmission or random transmission. 
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2. Vertical Federated Learning: In vertical FL, two datasets share the same sample space but differ in 

the feature space. Vertical FL aims to leverage the union of the two available feature spaces for the same 

customers to make any predictions. Thus, with vertical FL, various organizations can collaborate to achieve 

better results since they have much more available features for the same customer samples. The primary risk 

of user data leakage in this context occurs when there are curious but honest users who may seek to extract 

information about the data of other users. In this case, there are two proposed architectures, with or without 

a third-party organization coordinating the process. 

3. Architecture with a third coordinator: Assuming that 2 clients, C1 and C2, collectively aim to train a 

FL model using their local available data. The two clients, C1 and C2, are honest but curious, meaning we 

assume their data is valid, but they may seek information about the other client's data. A 3rd client, C3, plays 

the role of a coordinator. We assume the coordinator is a trusted organization. 

The described architecture ensures that C3 cannot extract information about the data of C1 and C2 since it 

only sees the local updates with the addition of a noise factor (mask). C1 and C2 have access to each other's 

gradients during the training process, but apart from the fact that these may concern features not present in 

the other feature space, the gradients at each corresponding stage are not sufficient to extract information 

about the other client's data. We assume that the number of samples, 𝑁𝑎, is much larger than the number 

of input features, 𝑛𝑎. We considered that clients C1 and C2 are honest but curious. In the case that one of 

them is malicious, they can provide a suitable unique non-zero input with a unique non-zero feature. In this 

case, they may determine the gradient of the other client for that specific feature of the sample. However, 

this is not sufficient to determine either the parameters or to extract information about the data. 

Additionally, the other client will easily detect malicious actions from the influence they have on the model. 

During the prediction/estimation operation, as shown in the table, there is also no information leakage. 

 

Figure 2-8 Indicative Architecture of Vertical FL with the participation of two major organizations 
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3 Caching Use-Case 

Our proposed use case is tailored to the network scenario depicted in the Use Case #1, extracted from 6G-

SENSES deliverable D2.1 [4]. 

In the context of IoT, sensing plays a crucial role. By collecting data taken directly from the field, sensors are 

able to monitor remote and hazardous environment without the need of human intervention. 

Sensing devices are able to produce great amount of data, such as constant temperature readings, motion 

detection logs, or also video feeds from cameras, which have to be delivered and processed by a central unit, 

in order to ensure seamless operations. Sensors are, most of the time, part of a wireless network of devices, 

used to relay information to central units [24]. 

For operations to be carried out smoothly, this network must remain consistently connected and online. 

However, the dynamic nature of wireless networks can compromise the availability and reliability of sensing 

services, as well as to reduce the available bandwidth for the client connected to the network. Continuous 

data caching can help in solving issues related to the temporary unavailability of the communication channel, 

preventing a permanent loss of critical sensing data. Furthermore, it can decrease the requirements in terms 

of channel bandwidth and reduce the network latency. While sensing data can provide insightful information 

in order to optimize the communication channel, it cannot cover those instances during which disruptions 

cannot be avoided. 

In Table 3-1 we provide a more in-depth review of the use case, and all its components. 

Table 3-1 In-network, Location Aware Caching Service for Disruption Minimization 

Use Case: In-network, Location Aware Caching Service for Disruption Minimization 

Roles - Stakeholders: RAN/O-RAN/RIS operator (capture/process sensing information), Network 

Operator (NOP) takes decisions based on the information, Service Provider, Mobile Caching Device 

(caches data when necessary/to reduce delays) 

Objective: The main objective of the proposed use-case is to reduce the service disruption of the sensing 

activity by leveraging novel in-network caching techniques. 

 

Figure 3-1 Application case with UAVs acting as mobile caching devices. 
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Figure 3-2 Example on how RIS can be used to enhance the communication channels. 

Description: 

RIS-assisted V2X Architecture 

RIS-assisted sensing panels can be integrated with devices able to perform sensing data to enhance the 

overall performance of communication and sensing systems [18][19][20]. The integration involves 

leveraging the capabilities of RIS and can lead to both optimization of wireless communication links and 

improvement of sensing capabilities. One aspect of integration is utilizing RIS to enhance the quality of 

communication in Integrated Sensing and Communication (ISAC) systems that 6G-SENSES is focusing 

on. The intelligent tuning of the electromagnetic properties of the RIS panels can improve signal quality, 

increase coverage, and mitigate interference. This leads to improved reliability and higher data rates in 

the communication link between sensors, devices, or networks involved in ISAC applications. 

Current status, Problem statement - limitations of today’s situation. 

The concept of caching at the wireless edge has undergone a profound transformation in recent years. 

The rapid evolution of emerging technologies has redefined many long-standing principles that were 

once rooted in existing network infrastructures. 

While numerous studies have explored caching solutions in traditional wireless networks, these 

approaches tend to perform well only in static or conventional wireless edge environments. Such 

approaches often struggle to adapt to scenarios where mobility is an integral part of the architecture. 

In highly dynamic, mobile-driven networks, with multiple mobile devices, the limitations of conventional 

caching strategies become more pronounced. 

Service Definition: 

RAN/RIS providers can deliver sensing data as a service to NOPs, enabling network optimization either 

on-demand or automatically for self-optimization by the RAN operator. Additionally, RAN/NOP 
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operators can provision sensing data to service providers (SPs) to support the deployment of specialized 

vertical services for end-users. 

SPs can offer applications and services with physical awareness capabilities, incorporating Collaborative 

Robots and Cooperating Mobile Robots to operate effectively in both static and dynamically changing 

radio environments. 

Moreover, MEC devices can supply data to applications and services when RAN/RIS sensing capabilities 

are insufficient to meet the required E2E performance, by leveraging caching mechanisms. This can 

result in faster responses than simply retrieving data directly from end-users. 

6G-SENSES Wireless Edge Caching Technical Solution/Innovation 

Our proposed solution addresses a key aspect of this evolving architecture, which it is still in its early 

stage. Although the concept of caching in mobile-assisted environments is not entirely new, it has 

largely been confined to theoretical explorations. The technologies necessary to fully implement these 

ideas, particularly those that support the dynamic and flexible nature of mobility, are still in the early 

stages of development. As a result, practical applications have been limited. 

However, with the advent of 6G and the novelties introduced by the 6G-SENSES project proposal, we 

are presented with a unique opportunity to establish a new paradigm. Our approach enables us to test 

and validate the efficiency of new proposed caching protocols, by leveraging specific architectures and 

cutting-edge technologies designed to meet the demands of this highly mobile environment. By doing 

so, we aim to bridge the gap between theory and practice, laying the groundwork for a new era of 

Wireless Edge Caching. 

Table 3-2 Sensing with Wi-Fi system 

Use Case: Sensing with Wi-Fi system (presence detection) 

Roles - Stakeholders: Service Providers (sensing data provider) 

Objective: 

The primary objective is to integrate sensing technology within Wi-Fi systems, enhancing both 

communication and sensing capabilities. Considering the 6G capabilities landscape, this use case aims to 

contribute to the development of technologies with applicability on (IMT 2030) new capability “ISAC,” 

especially enabling Immersive Communication and partially Hyper Reliable Low Latency Communication 

(HRLLC) usage scenarios. This use case details on the Next Generation Mobile Networks (NGMN) Enabling 

Service and Network Evolution categories. Considering the SNS ICE use case categories, the concepts to 

be implemented in this use case will be directly applicable to various service categories, e.g., the 

“Immersive Experience / Seamless Immersive Reality” along with “Physical Awareness” service 

components in various environments – where environment sensing will be needed. 

Description: 

Current status, Problem statement - limitations of today’s situation. 

The current SoTA primarily utilizes passive Wi-Fi signals for sensing, but the active approach proposed 

here is a novel concept that has yet to be fully explored. By integrating active sensing, we can expect to 

see a new wave of innovation in ISAC, leading to more immersive Augmented Reality (AR) / Virtual Reality 

(VR)/ Extended Reality (XR) experiences and a transformative impact on user interaction with laptops and 

other smart devices. This proposal not only aligns with the current trajectory of technological 

advancement but also charts a course for future innovations that will enrich our interaction with the 

digital world. An additional significant impact of active sensing lies in motion presence detection. This 

capability plays a crucial role in managing network resources and optimizing of the network based on 



D4.1 Initial SoTA and design of Wireless Edge Caching solutions  
 

 

HORIZON-JU-SNS-2023 - 101139282 Page 23 of 42 16. Jan. 2025 

 

sensing information. By intelligently detecting the human presence, the system can optimize the energy 

and resources of the network based on this information. 

6G-SENSES Concept 

Considering the 6G vision, a multitude of basic and advanced services will be delivered to verticals or 

individuals as end users in versatile environments. The incorporation of sensing capabilities is a key 

enabler for the support of services such as “Immersive Experience/ Seamless Immersive Reality” along 

with “Collaborative Robots/ Cooperating Mobile Robots”. Multiple RAN Resource providers/RAN 

Operators undertake the role of deploying RAN elements (of various technologies), including Wi-Fi, that 

enable ISAC. The sensing data/information captured by RAN (Wi-Fi) resource providing elements/roles is 

either processed for network optimisation or sent to a provider as a service-to-service 

providers/verticals; to enable Immersive Communication and Collaborative Robots service elements for 

relevant applications. In more technical terms, considering the technical limitations of current solutions, 

the algorithms developed for this purpose are designed to refine the process of delay and Doppler 

estimation, which are critical parameters in determining the relative motion and distance of objects in 

the vicinity of the sensor. 

Service Definition: 

RAN/ NOP Operator provisioning sensing data to SPs – for SPs to enable specific vertical services to end-

users. SPs to provide applications/services with Immersive Experience/Seamless Immersive Reality along 

with Collaborative Robots/Cooperating Mobile Robots service components in various environments. MEC 

device provides data to the applications/services when RAN/RIS sensing is not enough, or to improve E2E 

delay when caching is faster than data retrieval from the end-user. 

6G-SENSES Wireless Edge Caching Technical Solution/Innovation 

Our 6G-SENSES solution leverages advanced Wireless Edge Caching to enhance Wi-Fi sensing presence 

detection. In this context, presence detection involves using Wi-Fi signals to identify the presence of 

individuals or objects within a specific area. By implementing advanced caching protocols, our solution 

ensures that presence detection data is reliably stored and quickly accessible, even in the event of 

network disruptions. This reduces the risk of data loss and ensures continuous monitoring.  Continuous 

data caching helps to optimize bandwidth usage by storing frequently accessed data locally. This reduces 

the need for constant data transmission over the network, freeing up bandwidth for other critical 

operations and reducing overall network congestion. 
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4 Caching Model 

We devote this section to an in-depth exposition of the caching model utilized in the use-case presented in 

the previous chapter. We explore the implementation specifics of the simulation framework used to evaluate 

multiple caching strategies and present the results based on metrics such as HIT/MISS ratio, E2E delay, and 

data freshness. 

Traditional caching strategies are usually applied in environments where data is structured hierarchically. 

Memory is organized into tiers, with lower tiers featuring slower read performance. It is generally assumed 

that accessing and transferring data within the same memory tier requires a similar amount of time. 

In a sensing context, where sensors output data which is sent/offloaded to the nearest device acting as an 

edge server, this assumption falls short. There is an intrinsic difficulty when data is being retrieved by sensors 

or other mobile devices in the field, which depends on the device’s position, its offloading capabilities, the 

energy consumption of the sensing tasks takes, and more. 

In the following, different caching strategies in the context of Wireless Edge Caching are analysed. To that 

end, the simulation environment and structure are first presented. Afterwards, the performance of the 

multiple strategies is discussed.  

4.1 Description of the simulation framework 

We study the effectiveness of various caching strategies over a series of multiple simulated scenarios. We 

utilize two widely recognized tools in the IoT and robotics domains: the Robot Operating System (ROS) and 

Gazebo. ROS serves as a versatile and powerful framework, offering a rich collection of libraries and tools 

designed to facilitate the development and deployment of standardized robotic applications. Complementing 

ROS, Gazebo provides a highly accurate and physics-based simulation environment, enabling realistic testing 

of robotic systems in virtual settings. Together, these tools ensure a rigorous and reliable evaluation of our 

implementation under controlled and realistic conditions. 

4.1.1 Robot Operating System (ROS) 

ROS [21] is a set of software libraries and tools that help developers build robot applications. From drivers to 

state-of-the-art algorithms, and with powerful developer tools, ROS has what is needed for developing 

robotics project. 

With its open-source approach and the broad compatibility across multiple systems, the flexibility of the ROS 

framework allows to easily move solutions from simulation-based implementation to real hardware. ROS 

simplifies the development of robotic systems by enabling modular and reusable code. This is achieved 

through a component-based architecture that allows various software components to interact seamlessly, 

regardless of the programming languages or hardware platforms they are running on. 

The primary entity in a ROS system is the node, an abstract concept that represents a key component within 

the robot's ecosystem. Nodes interact among them through various interfaces to enable coordination and 

ensure the seamless operation of the entire robotic system. ROS nodes interact following different 

communication paradigms, as commented below: 

• Topics 

Topics enable asynchronous, many-to-many communication between nodes. Nodes can publish messages to 

a named topic, and other nodes can subscribe to that topic to receive messages. Topics are ideal for 

continuous data streams, such as sensor readings. 

Figure 4-1 shows a graphical example of a ROS topic, and how it connects different nodes with a 

publisher/subscriber approach. 
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Figure 4-1 Example of a ROS topic 

• Services 

Services support synchronous, one-to-one communication. They are used for short-lived tasks that require a 

direct request-response mechanism. Each service has a name, a defined request structure, and a 

corresponding response structure. 

Figure 4-2 shows an example of a ROS service, where a service server is advertised by a node. Multiple nodes 

can then act as service clients, making requests to the server. 

 

Figure 4-2 Example of a ROS service 
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• Actions 

Actions are a hybrid mechanism for long-running, asynchronous tasks, that provide feedback during 

execution. An action client sends a goal to an action server, which processes the task and sends periodic 

feedback and a final result. Actions are well-suited for tasks like motion planning or object manipulation, 

where the operation takes time and intermediate updates are beneficial. 

Figure 4-3 shows an example of a ROS action. Internally composed of two services and one topic, it provides 

a solid interaction for long-lasting requests. 

 

Figure 4-3 Example of a ROS action 

4.1.2 Gazebo 

Gazebo [22] is a 3D dynamic simulator with the ability to accurately and efficiently simulate populations of 

robots in complex indoor and outdoor environments. Gazebo offers physics simulation at a high degree of 

fidelity, a suite of sensors, and interfaces for both users and programs. 

It is directly tied to ROS, and solutions developed in Gazebo can be seamlessly integrated with ROS topics 

and services, allowing for a standard ROS interaction between the two environments. 

The flexibility of the environment allows for the direct deployment of solutions developed in Gazebo in real 

hardware, reducing the weight, time, and cost of real-world simulations. 

We employ Gazebo in our solution due to its highly flexible plugin architecture, which enables the realistic 

modelling of hardware components, including complex elements such as wireless interfaces. This capability 

is essential for accurately simulating interactions and performances in our use-cases, providing a reliable 

foundation for future advancements and scalability in our work 

 

 

 

 

 



D4.1 Initial SoTA and design of Wireless Edge Caching solutions  
 

 

HORIZON-JU-SNS-2023 - 101139282 Page 27 of 42 16. Jan. 2025 

 

 

Figure 4-4 Running instance of Gazebo modelling the use-case of Chapter 3 

4.1.3 Methodology 

The simulated sensing scenarios embrace three types of entities: BS, caching devices in the form of UAVs, 

and mobile sensors. 

• Base Station (BS): Placed at the centre of the simulation scenario, it periodically requests sensors’ 

data by querying the data on the caching devices. 

• Caching devices: The caching devices, in this particular case UAVs, are placed in regular intervals 

along the circumference of a circle with a pre-defined radius. This radius grows as the number of 

placed devices increases, maintaining an optimal distance between UAVs with respect to the 

communication range of the sensors on the field. 

• Sensors’ placement: The sensors are spawned randomly inside the coverage area of the caching 

devices. The deployment is configured in such a way that at the start of the execution all sensors are 

able to send their sensing data to at least one caching device. Sensors may move outside the range 

of the UAVs during the execution. 

Figure 4-4 shows an example of the simulation instance running in Gazebo. In this context, caching devices 

are mounted on top of UAVs, while sensors are the moving cars. Evaluation tests are run on simplified graphic 

instances, in order to save computational power. 

4.2 Structure of the Simulation 

The behaviour of the simulation is implemented through multiple classes that communicate with each other 

through ROS topics and services. An experiment is executed inside a Gazebo simulation, running in real time. 

We devote this section to present all the classes that bring the whole simulation together. The definition of 

each class includes an overall description, the class configuration/setup and the functional components it 
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implements. Figure 4-5 illustrates the hierarchy of all the classes operating within the simulation. Each class 

is individually described in detail in the next sections. 

 

Figure 4-5 Structure of the Simulation 

4.2.1 Simulation Manager 

Table 4-1 Simulation Manager 

Class: SimulationManager 

Class Description: 

The SimulationManager class orchestrates the interaction between mobile sensors and caching devices 

within the system. Its most important task is the forwarding of sensor data to nearby caching devices. 

Initialization and Setup: 

At startup, the SimulationManager automatically configures as both publisher and subscriber to all the 

topics required to read the state of the devices in the simulation. It simulates their communication 

interfaces by using ad-hoc topics, namely, tx_data and rx_data, used by all the sensors and devices in 

the simulation instance to push new, and listen for, incoming messages. 

Components: 

Position Management 

The class implements the store_sensor_position() and store_device_position() methods to keep track of 

the current positions of the sensors and caching devices. Notably, since the caching devices are deployed 

and then stay fixed, the subscription on devices’ odometry is destroyed as soon as the first position 

measurement is registered. 

Data Forwarding 

The forward_data() method is responsible for relaying sensor data to the appropriate caching devices. It 

evaluates the distance between each sensor and caching device, ensuring that only nearby devices 

receive the data: 
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• The method calculates the Euclidean distance between the sensor and each device using the 

point_distance() function.  

• If a device is within the defined sensors range, it publishes the received sensor data to its 

corresponding topic. 

4.2.2 Base Station Controller 

Table 4-2 Base Station Controller 

Class: Base Station Controller 

Class Description: 

The BaseStationController class serves as the central communication hub for managing interactions 

between the BS, caching devices and sensors. Its primary responsibilities include sending queries for 

sensor data, receiving responses, and storing the collected data for further analysis. 

Initialization and Setup:  

During initialization, the init() method performs several actions, being the most relevant one the 

creation of a JSON file to log the configuration parameters and the results of sensor queries. 

Components: 

Class Structure 

The BaseStationController class has the following key components:   

• Parameters: The controller initializes several parameters such as the number of caching 

devices, sensors, cache settings, and query rates. 

• Action Clients: It establishes action clients to interact with each caching device, enabling 

asynchronous communication for querying sensor data. 

• Sensor Position Tracking: It subscribes to odometry data from the sensors to track their 

positions (just to appropriately know when each sensor is active, and sensing and so to start the 

querying phase).  

• Query Management: The class manages the querying process, including the sending of queries 

and handling of responses. 

Query Management 

The primary functionality of the BaseStationController revolves around managing queries to the caching 

devices:  

• Sending Queries: The send_queries() method runs in a separate thread to continuously monitor 

the status of previous queries and initiate new queries at defined time intervals.   

• Starting Queries: The start_querying() method ensures that all action servers are online and that 

sensors are positioned before proceeding to send queries. 

• Sending Goals: The send_goal() method constructs and sends a goal message to each caching 

device, which includes the sensor ID and parameters to query. 

Response Handling 

The controller also manages responses from the caching devices:  

• Response Callbacks: The goal_response_callback() method processes the responses to the sent 

goals. If the goal is accepted, it waits for the result, and if rejected, it logs the information. 
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• Result Callbacks: The get_result_callback() method handles the results received from the caching 

devices. It processes the sensor data and logs any errors encountered during the query. 

• Concluding Queries: The conclude_query() method stores the collected results and resets the 

state for the next query cycle. 

Utility Methods 

Several utility methods support the main functionalities of the class: 

• compute_next_goal(): It determines the next sensor to query and the parameters to be 

included in the request. 

• convert_dict_to_sensordata(): It is responsible for converting a dictionary of sensor data into 

an instance of the SensorData class for easier manipulation and storage. 

• store_result(): This method serializes the results of the queries and appends them to the JSON 

log file created during initialization 

4.2.3 Cache Device Controller 

Table 4-3 Cache Device Controller 

Class: CacheDeviceController 

Class Description: 

The cache device is controlled by its own class, and is responsible for managing individual devices in the 

distributed caching system. Each caching device acts as an intermediary between the mobile sensors and 

the BS, facilitating the storage and retrieval of sensor data while maintaining coverage. 

This class integrates message-passing, caching strategies, and action handling to ensure efficient data 

management and response. 

Initialization and Setup:  

The CacheDeviceController class is initialized with multiple parameters. The device keeps an updated 

table of its cached data, and implements on top of it a run-time specified replacement policy. The 

following parameters are fully customizable, and can be changed at run-time: 

• Cache type: Defines the type of cache replacement policy (e.g., FIFO, LRU, LFU).  

• Cache size: Specifies the maximum number of entries the cache can hold.  

• Cache expiration: Sets the maximum age for cache entries, ensuring that outdated sensor data 

is automatically removed. 

Components: 

Cache Manager: 

Queries from sensors are handled by the Cache Manager, and the results of the requests are logged 

accordingly to their outcome. When new sensor data is received, it is parsed from JSON format, 

converted into an ad-hoc SensorData object (presented in the next section), and stored in the device’s 

cache (or not, based on the cache policy).  

This structure ensures that each caching device in the system can effectively handle its responsibilities, 

including maintaining accurate sensor data, managing limited storage efficiently, and responding to 

queries from the BS in a timely manner. 
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Communication Handler: 

Responsible of handling incoming and outgoing messages. Its interface is tied directly to ROS topics and 

services, ensuring that the managed data can be seamlessly switched to different implementation levels, 

i.e., from different types of simulated environments, up to real hardware. Actions on the communication 

handler regarding sensing messages automatically trigger events on the caching table stored. 

4.2.4 Cache Manager 

Table 4-4 Cache Manager 

Class: CacheManager 

Class Description: 

The CacheManager class is designed to handle data storage efficiently, allowing the devices to manage 

limited memory effectively by implementing various cache replacement policies. It incorporates 

expiration functionality to ensure that stale data does not occupy valuable storage space. 

Initialization and Setup:  

The CacheManager class is initiated by specifying its cache type, size and expiration time for the entries. 

Each caching device utilizes a single instance of a CacheManager in order to perform its caching task. 

Components: 

Class Structure 

The CacheManager class comprises several key components:  

• Cache Types: The CacheType enumerator defines different cache strategies, including FIFO, RR, 

LRU, LFU and LOC.  

• Expiration Handling: The ExpiringCache class implements functionality for expiring cache 

entries based on a time threshold, ensuring that old data is removed.  

• Cache Factory: The CacheFactory class creates instances of the ExpiringCache with specific 

cache types and configurations. 

Cache Types 

The CacheType enumeration provides a structured approach to defining different cache policies. Each 

policy dictates how entries are managed within the cache: 

• FIFO: The oldest entries are removed first.  

• RR: Entries are replaced at random.  

• LRU: The least recently used entries are evicted first.  

• LFU: The least frequently accessed entries are discarded. 

• LOC: The closest entry to the caching device is discarded. 

Expiration Handling 

The ExpiringCache sub-class manages cache entries with a defined expiration time: 

• Initialization: Upon instantiation, it accepts a cache object and an expiration time in seconds. 

The cache is initialized using the specified replacement policy and is wrapped with expiration 

capabilities.  
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• Item Management: The setitem() method allows for adding items to the cache. The getitem() 

method retrieves items while checking for expiration:  

o If the item is found and has not expired, it is returned.  

o If the item has expired, it is removed from the cache, and a CacheExpiredError is raised.  

o If the item does not exist, a KeyNotFoundError is raised. 

o If the item does not exist, but the queried sensor is in range of some caching device, 

DelayedDataResult is raised instead. 

• Cache Maintenance: The class includes methods to clear the cache and check its size, ensuring 

effective management of stored data. 

Error Handling 

The caching system includes robust error handling to manage exceptional situations:  

• CacheExpiredError is raised when a requested cache entry has expired, indicating that the data 

is no longer valid. The error will be caught by the caching device, stored and if requested 

forwarded to the BS.  

• KeyNotFoundError is raised when attempting to access an entry that does not exist in the 

cache. Again, the error will be caught and stored by the caching device, and forwarded to the 

BS if requested. 

4.2.5 Sensor Device Controller 

Table 4-5 Sensor Device Controller 

Class: SensorDeviceController 

Class Description: 

We simulate data produced by the sensors using a specific class, which keeps track of the sensor which 

produced the data, the time it was produced, and its given validity time.  Sensors constantly send 

produced data at a predefined interval. 

Initialization and Setup:  

The SensorDeviceController class is initialized with several core components, facilitating both data 

generation and sensor mobility:  

• Sensor Data Generation and Publishing: Sensors randomly generate data, which is then 

published over a designated ROS topic.  

• Movement Control: The sensor can patrol specified target points, moving autonomously while 

tracking its position and orientation. 

The constructor method init() sets up the sensor controller by declaring essential parameters and 

establishing publishers, subscribers, and action servers for sensor data transmission and movement 

control: 

• Data Publisher: The tx_topic is used by a ROS topic publisher to broadcast sensor data over the 

network. 

• Patrol Action Server: This action server allows external nodes (such as the 

MovementCoordinator, presented in the next section) to issue patrol commands, instructing 

the sensor to move to specific locations. 
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Components: 

Sensor Data Generation and Publishing 

Each sensor generates data at random intervals. The publish_sensor_data() method is responsible for 

generating and publishing this data as a ROS message.  

The generated data is then serialized into JSON format and published on the tx_data topic. This ensures 

that each sensor can periodically report its data to caching devices which cache the sensor data for later 

retrieval. 

Position Tracking 

The sensor’s position are continuously updated through the store_position() method, which subscribes 

to the odometry messages published by the Gazebo simulation, and keeps track of the position and also 

the orientation of the device within the simulation. 

Movement Control and Patrol Action 

The sensor’s movement is managed by the Patrol action server. The execute_patrol_action() method is 

triggered when a patrol command is received from the MovementCoordinator (presented below). The 

method controls the sensor’s rotation and movement to specified target positions.   

These methods ensure smooth and controlled movement, allowing the sensor to patrol its environment 

autonomously. 

4.2.6 Movement Coordinator 

Table 4-6 Movement Coordinator 

Class: MovementCoordinator 

Class Description: 

The MovementCoordinator class is responsible for managing a fleet of mobile sensors within the 

simulated environment. It controls the sensor movements by submitting patrol tasks to individual sensors 

and monitors their state. The class also computes the area coverage of the caching devices in order to 

guide correct sensor movement. 

Initialization and Setup:  

In the init() method, key simulation parameters are declared, and subscriptions are established to track 

the positions of sensors:  

• Parameters: The number of sensors, caching devices, sensor range, and field dimensions are 

declared as parameters, allowing flexibility in different simulation setups.  

• Action Clients: Each sensor has a corresponding ActionClient for submitting patrol tasks, 

enabling asynchronous control over the fleet’s movements.  

• Position Tracking: The class subscribes to odometry topics to monitor the real-time positions of 

sensors, storing this information for task submission and area coverage computation. 

Components: 

Task Submission 

The primary responsibility of the MovementCoordinator is to keep the sensors patrolling the covered 

field. The patrol_targets() method continuously resubmits tasks to sensors that are idle.  
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This method ensures that each sensor is tasked with moving to a new target position once it completes 

a previous patrol task. The submit_task() method assigns the specific patrol target to each sensor. The 

target is chosen based on the coverage grid calculated from caching devices’ positions. 

Sensor States 

The SensorState enumerator defines the possible states of a sensor:  

• IDLE: The sensor is not currently patrolling or sensing.   

• SENSING: The sensor is stationary and collecting data.   

• MOVING: The sensor is in the process of moving to a patrol target. 

 

4.3 Performance Evaluation and Testing 

To comprehensively evaluate the performance of the caching strategies implemented, we conducted a set 

of tests, running different eviction strategies on the same simulation scenarios. These tests focused on 

analysing various metrics related to cache performance, including HIT/MISS rate, data freshness, and 

cumulative delay. The results of these tests are reported in this section. 

The BS requests data from sensors following a Zipf’s distribution [23]. In all the tests, we deploy a set of 4 

caching devices, following the specifications mentioned in the chapter before. 

We confront a total of 5 eviction strategies: 

• RR: Random Replacement. One element is replaced at random 

• FIFO: First In, First Out. Elements are replaced in a queued order. 

• LRU: Least Recently Used entry is evicted. 

• LFU: Least Frequently Used entry is evicted. 

• LOC: Location-based caching, where the closest entry to the caching device is evicted. 

We then conduct two sets of experiment:  

• Fixed size of cache to a value of 5, varying number of sensors, from 10 to 20. 

• Fixed numbers of sensors to 10, varying cache size, from 4 to 8. 

Data produced by sensors is constrained by a maximum age, and is set to expire after 10 seconds. All the 

evaluations are based on a total of 200 queries. In all cases, the distribution of the corresponding metric is 

shown using a box plot representation. Box limits correspond to the 25 and 75 percentiles, while whiskers 

represent the range where samples are not considered outliers (1.5 times the interquartile range). The line 

within the boxes is the median (percentile-50) of the error. 

4.3.1 Varying number of sensors 

Figure 4-6 shows the results in terms of MISS rate. LFU manages to deliver the best performance in this 

context. Random Replacement is able to outperform all the other strategies. Performances of the location-

based caching are particularly interesting, given the simplicity of the replacement policy, where closest 

entries are discarded regardless of their use. 
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Figure 4-6 Comparison of caching strategies, distribution of miss rate by cache type, varying number of 
sensors. 

 

Figure 4-7 Comparison of caching strategies, cumulative E2E delay by cache type, varying number of 
sensors. 

 

Figure 4-8 Comparison of caching strategies, average age of queried data by cache type, varying number 
of sensors. 
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Figure 4-7 shows the results in terms of E2E delay. We value cache hits with a value of 1, while cache misses 

with a value of 2. Results are in line with the performances displayed in Figure 4-6. 

Figure 4-8 shows the results in terms of data freshness. It is interesting to see that even if FIFO and LRU 

perform worse in terms of MISS rate, they manage to achieve slightly better results in this context. Their use 

may be interesting in application where the freshness of the data produced by sensors is a priority. Increasing 

the number of sensors in this context makes data more volatile on the cache, and therefore lowers the 

average age of the data which is successfully retrieved from the cache. 

4.3.2 Varying cache size 

Increasing the size of the cache to a value closer to the number of sensors slowly trivializes the studied 

problem. We can see in Figure 4-9 how the MISS rate drastically decreases as soon as the cache size gets 

closer to the number of sensors, 10.  

 

Figure 4-9 Comparison of caching strategies, distribution of miss rate by cache type, varying cache size. 

 

Figure 4-10 Comparison of caching strategies, cumulative E2E delay by cache type, varying cache size. 
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E2E delay is calculated as in Figure 4-7, so that the delay considered for cache misses is twice that of hits. As 

can be seen in Figure 4-10, the delay mirrors closely the results in terms of MISS rate, just like for the tests 

before. 

Data freshness, shown in Figure 4-11, tends to stabilize to a fixed value, and the difference between the 

eviction policies tends to disappear. 

 

Figure 4-11 Comparison of caching strategies, average age of queried data by cache type, varying cache 
size. 
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5 Summary and Conclusions 

This document provides study of the SoTA on caching solutions. It also aims to identify the architectural 

design principles of a wireless edge caching solution needed to support 6G systems. The deliverable identifies 

a challenging network scenario taken from Use Case #1 that was described in deliverable D2.1 [4] of the 6G-

SENSES project, in which the use of wireless edge sensing mechanisms can improve the network 

performance. 

To study, design and evaluate different caching algorithms, we developed a detailed simulation framework 

that includes network communication between devices and sensors. The report describes this framework 

and presents the initial performance results achieved by testing several conventional caching strategies used 

in the literature under various scenarios. Different key performance metrics, such as HIT/MISS ratios, E2E 

delay, and data freshness are evaluated.  

The work done until now mainly focused on the development of the simulation framework. Leveraging this 

environment, we plan to test and validate different scenarios and request patterns, considering localization 

information. 

Therefore, we intend to build upon the work performed until now by designing additional algorithms that 

leverage location-related information to create novel location-based caching mechanisms. These approaches 

will be evaluated to assess their impact on caching performance compared to standard caching mechanisms. 

A more detailed and precise architectural description of the Wireless Edge Caching mechanism, together with 

a thorough performance analysis, will be included in deliverable D4.2. 
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7 Acronyms 

Acronym Description 

AI Artificial Intelligence 

AP Access Point 

AR Augmented Reality 

BS Base Station 

CDN Content Delivery Network 

CF Cell-Free 

CF-mMIMO Cell-Free massive MIMO 

CPU Central Processing Unit 

C-RAN Cloud Radio Access Network 

E2E End-to-End 

FIFO First In, First Out 

FL Federated Learning 

HRLLC Hyper Reliable Low Latency Communication 

ICN Information-Centric Networking 

IMT International Mobile Telecommunications 

IoT Internet of Things 

ISAC Integrated Sensing and Communication 

JSON JavaScript Object Notation 

LFU Least Frequently Used 

LOC Location 

LRU Least Recently Used 

MEC Multi-access Edge Computing 

MIMO Multiple-Input Multiple-Output 

ML Machine Learning 

mMIMO Massive MIMO 

MRU Most Recently Used 

NGMN Next Generation Mobile Networks 

NOP Network Operator 

O-RAN Open RAN 

RAN Radio Access Network 

RIS Reconfigurable Intelligent Surface 

ROS Robot Operating System 

RR Random Replacement 

RRH Radio Remote Head 

SMO Service Management and Orchestration 

SNS JU Smart Networks and Services Joint Undertaking 

SP Service Provider 

UAV Unmanned Aerial Vehicle 
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UE User Equipment 

V2X Vehicle-to-Everything 

VR Virtual Reality 

WAT Wireless Access Technology 

Wi-Fi Wireless-Fidelity 

XR eXtended Reality 


